Pallister Park Primary School

How we teach calculations:
Moving Towards Mastery Policy for Mathematics September 2020

Our maths curriculum:

Our intent is to produce an ambitious, connected curriculum accessible to all pupils in school right through from EYFS to the end of Y6. Our curriculum will not only cover all the content of the National Curriculum, but also provide advice and exemplification for teachers and parents.

As a school we want pupils to become fluent in the fundamentals of mathematics, to be able to reason and to solve problems. Our curriculum embraces these National Curriculum aims, and provides guidance to help pupils to:

- Use the Concrete Pictorial Abstract approach (detailed on p.3) to help pupils understand mathematics and to make connections between different representations.
- Develop mathematical language and questioning so pupils can discuss the mathematics they are doing, and support them to take ideas further.
- Become fluent mathematicians, and foster a love of learning for mathematics.

Why we use the White Rose Maths curriculum and follow an order of progression?

To learn mathematics effectively, some things have to be learned before others, e.g. place value needs to be understood before working with addition and subtraction, addition needs to be learnt before looking at multiplication (as a model of repeated addition).

You will see this emphasis on number skills first, carefully ordered, throughout our primary curriculum. For some other topics, the order isn't as crucial, e.g. Shapes and Statistics need to come after number, but don't depend on each other. We mix these so pupils have as wide a variety of mathematical experiences as possible in each term and year.

The following calculation policy has been revised in September 2020 to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the 'Development Matters' EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

Maths teaching across the school now incorporates a 'Mastery' approach to learning from Year 1 to Year 5 in 2020/21. This reflects national requirements to allow all children to access skills, methods and concepts within their year group. Children are assessed against year group expectations leading to their mastery of skills over the academic year. At the end of blocks of work children will be deemed to be working towards, meeting the national expectations or working with greater depth. Within every year group, fluency is a high priority in order for a child to 'master' a concept. In order to provide depth of understanding, children will be given opportunities to problem solve, reason and explain.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children's understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons, although skills will still need careful teaching and practice. Staff are now using a 'mastery' approach to teaching which involves several stages to support a concept.

Choosing a calculation method:

During a lesson, children can explore and choose a concrete, pictorial or abstract way of working. Teachers will model all three methods of working to encourage children to practically use equipment, to visually see a concept, and then to apply the prior learning in order to utilise a more abstract method which involves using symbols, digits and working mentally.

Concrete Representation

The practical stage. Children are first introduced to an idea/skill/concept by physically acting it out with real objects, this could also involve the outdoor environment. This is a 'hands on' stage using real objects linked to real-life and the wider curriculum and/or mathematical equipment, (e.g. five and ten frames, Dienes, Numicon etc.) and it is the prerequisite for a CONCEPTUAL
UNDERSTANDING.

Pictorial Representation

The image stage. A child must of attained a sufficient understanding at the practical, CONCRETE experiences performed and can now relate them to PICTORIAL representations, such as a DIAGRAM or PICTURES of the problem. PICTORIAL representations, such as the bar model, can also be used to aid a child's understanding.

Abstract Representation

The symbolic stage. Children must be taught how to represent problems by using ABSTRACT mathematical notation, e.g. $12 \times 2=24$. The previous two methods of working out should facilitate the transition into enabling all children to complete abstract working out with understanding of what they are doing.
"If we do not use concrete manipulations, then we cannot understand mathematics. If we only use concrete manipulations, then we are not doing mathematics." Maths No Problem (2016)

Addition

	Objective	Concrete	Pictorial	Abstract
Y1	Number bonds of 5, $6,7,8,9$ and 10	Use cubes to add two single digit numbers together as a group or in a bar. Use of part whole models at this stage will scaffold future learning.	Use pictures to add two single digit numbers together as a group or in a bar.	$\begin{aligned} & 6+4=10 \\ & 4+6=10 \\ & 10=6+4 \\ & 10=4+6 \end{aligned}$ Use the part-part-whole diagram as shown to move into abstract working.
y1	Counting	Start with the larger number on a bead or with items and count on the smaller number to find the answer.	Use a number line to count on in ones.	$\begin{aligned} & 5+3=8 \\ & 3+5=8 \\ & 8=3+5 \\ & 8=5+3 \end{aligned}$

Addition

	Objective	Concrete	Pictorial	Abstract
y1	Adding 2 single digit numbers (Regrouping to make 10)	$7+4=11$ Start with the bigger number and use the smaller number to make 10.	$\begin{aligned} & 7+3=10 \\ & 10+1=11 \end{aligned}$	$7+4=11$
y2	Adding 3 single digit numbers	$3+5+7=15$ Put 3 and 7 together to make 10 if possible. Then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} 3+5+7 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

	Objective	Concrete	Pictorial	Abstract
y2	Column method without regrouping	Add together the ones first, then add the tens. Use either Dienes/Numicon/10s/1s first before moving onto place value counters. $32+25=$	After physically using apparatus and place value counters, children can draw the counters to help them solve additions.	$32+25=57$ $T 0$ +32 $\frac{25}{07}$ $\frac{50}{57}$ Expanded method can be used to consolidate place value knowledge. Efficiency achieved by moving onto the compact method.
y2	Column method with regrouping	10_{s} $1 s$ $1 /$ \ddots \ddots $\cdots:$ Make both numbers on a place value grid. Add up the ones, then exchange 10 ones for 1 ten.	Children can draw pictures of $10 \mathrm{~s} / 1 \mathrm{~s}$ as above to help them to solve additions.	$37+45=82$ 70 +37 45 12 $\frac{70}{82}$ Expanded method. Efficiency achieved by moving onto the compact method.

Addition

	Objective	Concrete	Pictorial	Abstract
y3/4	Column method with regrouping. Y3-3 digit Y4-4 digit	Make both numbers on a place value grid. Add up the ones and exchange the 10 ones for 1 ten. As children move on to decimals, money and decimal place value counters can be used to aid understanding.	$100 ' s$ 10 's 1 's 0 00 000 0000100's 10 's 1's 0 0 000 00 0 Children can draw pictures of counters or Hs, Ts and Os transitioning from apparatus to support learning and understanding. *Addition of money to use $£$ and p separately in pictorial stage.	 *By Year Four children will progress on to adding four digit numbers. As children progress, decimals and money can be introduced here.
Y5/6	Column method with regrouping	Consolidation of understanding and using numbers with more than four digits and extending by adding numbers with up to three decimal places. *Practical apparatus available extends to numbers with up to three decimal places.		

Subtraction

	Objective	Concrete	Pictorial	Abstract
Y1	Taking away ones	Using concrete apparatus such as cubes, counters etc. to show how objects can be physically taken away.	Making use of drawn representations to show what has been taken away. $5-2=3$	$5-2=3$
y1	Counting Back	 Make the largest number in the number sentence. Move beads along as children count back in ones. $14-5=9$	Counting back on a number line. So Start at the largest number and count back showing the jumps on a number line.	Mental calculation of thinking of 14 and counting back 5 . Use of fingers to help if needed. $14-5=9$
y1	Find the difference	Compare amounts and objects to find the difference. Use counters or cubes to make bars to find the difference. Basic bar models help to show the difference.	Counting on to find the difference. Drawing bars to find the difference.	Sarah has 8 marbles. Tom has 3 marbles. Find the difference between the number of marbles the children have. $8-3=5$

Subtraction

	Objective	Concrete	Pictorial	Abstract
y2	Column method without regrouping	Use apparatus Dienes, Numicon or counters to make the bigger number then take the smaller number away. Counters show how to partition numbers to subtract. Again starting with the largest number.	Draw pictures of counters or 10 s and 1 s to represent the numbers starting with the largest. These can be set out as they would be in columns.	Practical and pictorial methods lead onto 'column subtraction'.
y2	Column method with regrouping	Starting with one exchange at Y 2 . By making the larger number with apparatus. Discuss and investigate "I need to exchange/move 1 of my tens into ten ones".	Draw counters onto a place value grid and indicate what has been taken away and where exchanges have been made.	Column subtraction is again used even when showing where values have been exchanged.

Subtraction

	Objective	Concrete	Pictorial	Abstract
$\begin{aligned} & \text { Y3 } \\ & \text { y4 } \end{aligned}$	Column method without regrouping *y4 children will use similar methods with four digit numbers	Use Dienes/Base 10 to start with before moving onto place value counters. Revisit without regrouping before moving onto exchanging.	Draw counters onto a place value grid and indicate what has been taken away and where exchanges have been made if needed.	Practical and pictorial methods lead onto 'formal written method of compact column addition fundamental to addition throughout the rest of Key Stage Two. $\begin{aligned} & 428-115= \\ & 428 \\ & -115 \\ & -113 \\ & \hline \end{aligned}$
Y4 y5 y6	Column method for subtraction	Compact column subtraction consolidate four digits and extended by adding num place value in each column. *Practical apparatus available extends to $\begin{array}{r} 55^{5} 38 \\ -\frac{2192}{3192} \\ \hline 3446 \\ \hline \end{array}$	understanding with/without regrou ers with up to three decimal places numbers with up to three decimal $\begin{array}{r} 0 x^{14} \not 0 \not 09,699 \\ -089,949 \\ \hline 60,750 \end{array}$	ing. Numbers contain more than Zeros can been used to show the aces. $\begin{array}{r} Y 1015 \cdot{ }^{3} 4199 \mathrm{~kg} \\ -036 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

Multiplication

	Objective	Concrete	Pictorial	Abstract
Y1	Repeated addition	Make use of different objects to add equal groups together.	Repeated addition can be used with pictures/number lines/bar models to illustrate problems. $\begin{aligned} & 2+2+2=6 \\ & 2 \end{aligned}$ 边 Number Line O $\begin{array}{ll}+5 & +5 \\ 1 & 1\end{array} 111111$ \qquad \qquad	Write addition sentences to describe objects and pictures.
y1 y2	Arrays showing commutative multiplication	Create arrays using counters/cubes to show multiplication sentences.	Draw arrays in different rotations or bar models to illustrate commutative multiplication sentences. $\begin{aligned} & 6 \times 2=12 \\ & 2 \times 6=12 \end{aligned}$ *Arrays can be linked with areas of rectangles.	Use of arrays can be used to compose more than one multiplication sentence and revise repeated addition.

Multiplication

Multiplication

Multiplication

Division

	Objective	Concrete	Pictorial	Abstract
y1 y2	Sharing	I have 12 counters, can you share them equally between 2 people? After making 12 with Numicon how can it be shared with the 2 plates?	Children can use pictorial representations or bar models to share out the quantities.	Share 12 carrots between 2 rabbits... $12 \div 2=6$
y2	Sharing and Grouping	Divide quantities into equal groups. Make use of counters, cubes, objects or place value counters to aid understanding.	Use a number line to represent jumps in groups. The number of jumps will equal the number of groups. Use bars of 3 to make 15 and count how many bars were used.	$15 \div 3=5$

Division

	Objective	Concrete	Pictorial	Abstract
y2 y3	Division with arrays	Make links from division to multiplication by creating an array and thinking of the number sentences that can be created.	Draw an array and make use of lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 18 \div 3=6 \\ & 18 \div 6=3 \\ & 3 \times 6=18 \\ & 6 \times 3=18 \end{aligned}$
y3	Short Division	Make use of place value counters to divide can be replaced by pictures at the next stage, written method dependent on understanding. Example without remainder $96 \div 3=32$ $42 \div 3=14$ Start with the biggest place value. We are put 1 ten in each group and we have 1 ten ones and then share the ones equally amo each group.	ng the short division method. (Counters though may move swiftly into the sharing 40 into three groups. We can $f t$ over. We exchange this ten for 10 the groups. We look at how many are in	Once children are secure with division as grouping and demonstrate this using number lines, arrays etc., short division for larger 2-digit numbers should be introduced, initially with carefully selected examples requiring no calculating of remainders at all. $\text { 3) } \begin{array}{r} 32 \\ 96 \\ 3168^{21} \end{array}$

Division

	Concrete				
				AnMer mam	$\underline{-1}$
					$5 \underbrace{8 \frac{8}{3}}_{5}$
		:\%		$1861 / 5$	
				$5 \longdiv { 9 4 3 }$	

Division

